Study of Short Range Correlations (SRCs) at JLab

Dien Nguyen University of Virginia

HUGS summer school 2015

How Nucleons behave at short distance?

Woods-Saxon nuclear potential

Need to understand about nuclear structure at short distance

Realistic potential & momentum distribution

Short range N-N interaction is responsible for high momentum tail of the momentum distribution in nuclei (significant contribution with k>kf)

Electron Scattering Kinematics

reaction plane

Four-momentum transfer: $Q^2 \equiv -q_{\mu}q^{\mu} = q^2 - \omega^2$

Missing momentum: $p_m = q - p = p_{A-1}$

Bjorkenx: $x_B = Q^2/2m\omega$ (just kinematics!)

Quasi_elastic: expect peak at $X_{B} = 1$ and Broadened by Fermi motion of nucleon

Study 2N SRCs regime

Minimum initial struck nucleon momentum

We need to go to high x and Q² where $P_{min} > P_f$ where SRCs are dominant. In addition, inelastic processes are repressed insuring clean quasi-elastic scattering from a nucleon in a pair.

Momentum Distributions

C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53 (1996) 1689.

2N SRCs Evidence: Cross section ratios

High momentum tails yield constant ratio if SRC exist

Evidence of 2N-SRCs at x>1.5

Cross section per Nucleon

Isospin dependence SRCs

Simple SRCs model assumes isospin independence

SRCs measurement: approximately 20% contribute. Where 90+-10% from p-n SRC pairs, 5+-1.5% from p-p n-n pairs.

Solid evidence of Isospin dependence of SRCs

SRCs Isospin study from ³He/³H

CLAS: Hall B, Jefferson lab, K. S Egiyan et al. (CLAS), Phys. Rev. Lett. 96, 082501 (2006). **E02-019**: Hall C, Jefferson lab, PRL 108, 092502 (2012)

Conclusion:

- We got several important results about short range correlation also isospin dependence.
- Need more precise experiment to study about isospin dependence.
- -Need to study more about 3N short range correlations to understand how nucleons behave in this region.

We are getting ready for tritium experiment in Spring 2017.

Thank you very much for your attention

Back up

SRCs Isospin study from ³He/³H

E12-11-112: kinematics

Beam current : 20 muA, unpolarized.

Beam Energy : 2.2 GeV and 4.4 GeV

Scattering angle: 17 and 19 degree

Beam time : 17.5 days 4.4 GeV (main production) 1.5 days 2.2 GeV (checkout + QE)

Right HRS running ("parasitic")

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

E12-11-112: Projected results Isospin study of SRC

At x>2 3He/3H # 1.4 implies isospin dependence AND non-symmetric momentum sharing

Expected uncertainty in 2N-SRCs region approximately 2% It is unique experiment and have very strong advantage to see isospin dependence. (40% difference)

Isospin dependence 2N-SRCs

•SRCs model: the nucleon correlation are assumed to be isospin independence Coincidence (e,e'pN) Measurement

x > 1, $Q^2 = 1.5$ [GeV/c]² and missing momentum of 500 MeV/c

Inclusive scattering at large x

Nucleon's Fermi motion broadens QE peak The strength of the single particle reaction extends to x~1.3

Precision measurement of Isospin dependence in the 2N and 3N short range correlation region

Main physics goals

► Isospin-dependence of 2N_SRCs.

➤3N –structure (Momentum-sharing and Isospin).

➤Cross section and ratio for the test of few-body calculation and final-state interactions.

Nuclear potential, n(k)

NN Potential AV₁₈

Short range N-N interaction is responsible for high momentum tail of the momentum distribution in nuclei (significant contribution with k>kf)

Binning correction in hall B Data

х_в

Calculation the absolute thickness of Target for Triton experiment

Question: How can we check the target thickness g/cm2?

Maybe the answer is elastic scattering?

E0=3.356 GeV and Theta= 21, ~1 hour run time

yield = $\frac{d\sigma}{d\Omega} * L * \Delta \Omega$

E0= 2.2 GeV, Theta= 12.5 degree

Run time ~ 1 Hour3He Yield ~ 1e7 eventsStatistic ~3HYield ~ 1e5 eventsStatistic ~ 0.3%

How about 15 degree ?

1 hour3He yield ~5e5 eventsStatistic ~ 0.14%3H yield ~5e4 eventsStatistic ~ 0.45%

Yield from theoretical calculation

Beam enery : 3.356 GeV, theta=21 degreeRuntime= 0.786 hourTarget He3: ideal density 0.029g/cm3, length=20cmTotal charge: 0.283 C. $N_e = 1.766e18(electrons)$ $\theta_{tg} = \pm 30mrad$ $N_n = 1.2e23(nucleons)$ $\varphi_{tg} = \pm 20mrad$ $\Delta \Omega = 2.4msr$ $XS = 1.36e-6\mu b$

yield =
$$\frac{d\sigma}{d\Omega} * L * \Delta \Omega$$

Yield = 692 events

About 3 times different from real data with the same condition.

Simulation: MCEEP

Setup simulation like theoretical calculation: with target is thin foil with the same thickness (g/cm2)

yield $_{mc} = 694 events$

Question for experiment will be how can we check the target thickness g/cm2

Target 3He, current= 25 muA Rho=0.029g/cm3, length=30 cm =>thickness ~0.9g/cm2 Lu= 22.5 muA.g/cm2

E0=2.2 GeV, theta=12.5, Rate=0.8699e4 E0=2.2GeV, theta=21, Rate=5.409

```
Assume runtime = 1hour
```

Target 3H, current=25muA Rho=2.5mg/cm3, length=30cm =>thickness~0.075g/cm2 Lu=0.075*25=1.875 muA.g/cm2

E0=2.2 GeV, theta=12.5, Rate=0.5338e3 E0=2.2 Gev, theta=21, Rate =0.4508

3He theta=12.5 Yield(ideal)=3.131e7 events => experimental Yield ~1e7 events
3He theta=21 Yield(ideal)=1.94e4 events => experimental Yield~ 6500 events
3H theta=12.5 Yield(ideal)=1.9e6 events => experimental Yield ~ 6e5 events
3H theta=21 Yield(ideal)=1623 events => experimental Yield ~ 541 events

Uncertainty for Tritium experiment

Systematic	δσ/σ	$\delta R/R$	$\delta R/R$
		(normalization)	(pt-to-pt)
Acceptance correction	2.0%*	0.5%	1.0%
Radiative correction	3.0%*	0.4%	0.3%
Tracking efficiency	1.0%*	-	0.2%
Trigger efficiency	0.5%*	-	0.1%
PID efficiency	1.5%*	-	0.2%
Target thickness	2.0%	2.0%	-
Charge measurement	0.5%	-	0.5%
Energy measurement	0.05%	-	-
COMBINED UNCERTAINTY	4.6%	2.1%	1.2%